

Journal of Alloys and Compounds 320 (2001) 58–71

Several of
ALLOYS
AND COMPOUNDS
————————————————————

www.elsevier.com/locate/jallcom

Plutonium hydride, sesquioxide and monoxide monohydride: pyrophoricity and catalysis of plutonium corrosion

John M. Haschke^{a, *}, Thomas H. Allen^b

a *Kaiser*-*Hill Company*, *LLC*, *P*.*O*. *Box* 464, *Golden*, *CO* 80402, *USA* b *Los Alamos National Laboratory*, *P*.*O*. *Box* 1663, *Los Alamos*, *NM* 87545, *USA*

Received 9 October 2000; received in revised form 5 January 2001; accepted 10 January 2001

Abstract

Reaction rates of air and oxygen with cubic plutonium hydride (PuH_r, $1.9 < x < 3$), monoxide monohydride (PuOH), and Pu metal coated with these compounds are described, along with kinetic results for the $Pu+H₂$ reaction. Pyrophoric tendencies are not observed for PuOH, but exposure of PuH_r and PuH_r- (or PuOH-) coated Pu to air or O₂ at room temperature result in spontaneous reactions that consume both O_2 and N_2 . These reactions and hydriding have zero or slightly negative activation energies and pressure-dependent rates. Pyrophoric reaction of PuH, and PuH,-catalyzed corrosion of Pu depend on thermal maintenance of catalytic Pu, O₃ at the gas–solid interface and are prevented by formation of a protective PuO₂ layer at low temperatures and low O_2 , pressures. The Pu+H₂ reaction is catalyzed by Pu₂O₃ and PuH_x is produced by the Pu+H₂O reaction only at conditions where Pu₂O₃ formation is kinetically favored. Thermal ignition of Pu near 500° C is attributed to autoreduction of the PuO, surface to Pu,O₃ at that temperature. At normal storage temperatures, formation of pyrophoric corrosion products is unlikely in open oxidant-rich systems, but surfaces that catalyze rapid Pu corrosion in air are formed during extended storage in closed systems. \oslash 2001 Elsevier Science B.V. All rights reserved.

Keywords: Corrosion; Actinides; Catalysis

several hazards cited in an assessment of vulnerabilities ment vessels, and transformation of massive metal into associated with handling and storage of metal and residues dispersible material forms [2]. A specific concern at Rocky containing particles of metal [1]. Plutonium metal fines are Flats is that corrosion products formed by reaction of metal classified as pyrophoric because they spontaneously ignite with moisture react upon exposure to air and act as thermal in the presence of oxygen if heated to $120-200^{\circ}$ C. In sources for ignition of residual plutonium metal [3]. A contrast, large pieces of metal reportedly burn only when hypothetical product consisting of 5% PuH₂ formed by heated to red-hot temperatures. Plutonium hydride formed reaction of metal with water, 0.5% fine metal grains by facile reaction of metal with hydrogen from radiolysis formed by rapid grain-boundary corrosion of the metal and of organic materials and from other sources is also 94.5% of the PuO_{1.98} phase present at the lower boundary categorized as pyrophoric and has additional capability for of substoichiometric dioxide is proposed. Although the catalyzing oxidation. Chemical properties are described as existence of such mixtures is not confirmed experimentalcomplex and dependent on specific conditions. ly, a potential for rapid exothermic reaction with air arises

1. Introduction Relevance of chemical behavior to handling and extended storage of plutonium is realized in the potential for Chemical properties of plutonium are the source of thermal excursions, pressurization and failure of containfrom the anticipated presence of hydride and mandates use of adequate procedures.

The complexity of plutonium ignition is suggested by diverse observations. Ignition points for unalloyed metal *Corresponding author. Present address: Haschke Actinide Science Consulting, 11003 Willow Bend Drive, Waco, TX 76712, USA. and alloy with a minimum thicknesses greater than 0.2 mm *E-mail address:* johnhaschke@msn.com (J.M. Haschke). are in the 500±25°C range [4], not at 'red heat' as stated

less than 0.1 mm ignite in air at $150-200^{\circ}$ C, but instances tion of metal in air.

are cited in which chips and lathe turnings spontaneously burned at room temperature [4]. Hydride-coated metal with thicknesses of 1–2 mm is consumed within minutes after **2. Experimental methods** exposure to air at room temperature [5]. Nitrogen and oxygen react indiscriminately at the 3.7:1 ratio of the Chemical and kinetic behavior of PuOH and of elecelements in air to form PuN and Pu₂O₃ or an oxide–nitride trorefined Pu metal (major impurity: 200 ppm Am) and solid solution of Pu(III) as hydride catalytically moves the weapons-grade delta-phase gallium alloy with surface reaction front into the metal. Hydride-catalyzed oxidation coatings of Pu_2O_3 , $PuOH$, and PuH_x were investigated
by O_2 at 3 bar is 10^{13} faster than corrosion of delta-phase using PVT (pressure–volume–temperature) gallium alloy in air at 25°C. The solid product is mono-
volume-calibrated stainless steel test system designed for lithic with a hydride core encased in a thick Pu_2O_3 shell. high pressure and high vacuum operation consisted of a Contrary to earlier indications that cubic, α -phase Pu_2O_3 manifold, reactors (40–50 cm³), and an (hereafter identified as Pu_2O_3 or sesquioxide) protects Thermocouples and pressure transducers allowed for mea-
against oxidation [6], these results suggest that Pu_2O_3 is surement of T and P in each volume. Tests we highly reactive [7]. with accurately weighed metal specimens (5–12 g) having

 $Pu₂O₃$, $PuH₂$, and other potentially pyrophoric and cata-
lytic materials. Failure of small Pu particles to ignite in air phere in the reactor and heating with a resistance element lytic materials. Failure of small Pu particles to ignite in air below 150° C implies that metal fines are not inherently or cooling with a coil containing a flow of refrigerated pyrophoric at room temperature [4], but reoxidation of the perfluorocarbon liquid before evacuation and addition of $Pu₂O₃$ layer formed by autoreduction of surface PuO₂ reactant gas. Gases were analyzed with a quadrupole mass above $150^{\circ}C$ [8] provides sufficient heat to increase the spectrometer calibrated for ionization efficiency and fragtemperatures of high-surface-area $(0.1 mm thickness or mentation. Calibrations were made using gases with the$ radius) metal to the 500°C ignition point [7]. Plutonium highest available purity (Matheson) and selected mixtures monoxide monohydride (PuOH) is a potentially reactive by referencing measured spectra to that for N_2 . compound formed by corrosion of Pu in liquid water at Desired compounds were formed on metal surfaces by room temperature [9,10]. PuOH crystallizes in a fluorite- chemical treatment of plutonium specimens at conditions related structure with anionic sites in a Pu(III) lattice known to yield those products. Characterization of pre-
occupied by O²⁻ and H⁻. However, the stoichiometric pared surfaces was precluded by the presence of hig oxide hydride differs from the nonstoichiometric hydride, a reactive compounds and the inability to perform analyses cubic PuH_x solid solution (1.9< x <3) formed by accom-
modating anion vacancies or H⁻ interstitials in the fluorite phere of the test system. The validity of surface analyses structure [11]. Unlike the relatively unreactive hexagonal would be compromised by the likelihood of reaction with PuH_{3-y} phase obtained by reacting Pu with excess H_2 at trace contaminants during handling. The potential for elevated temperature and pressure [12,13], PuH, forms at violent reaction with air and dispersal of plutonium created low temperatures and pressures and is considered highly an unacceptable safety risk. reactive in air [14]. Reactions of unalloyed and alloyed Pu with H₂ were

PuH, and PuOH, investigate the catalytic involvement of after a rate maximum was reached. Kinetic measurements these hydridic compounds and Pu_2O_3 in plutonium corro-
sion, and identify properties and conditions that promote $\frac{4}{2}$ bar. $P-T$ data were measured as a function of time, t, pyrophoric behavior. We also determine the temperature until the residual pressure approached zero. and pressure dependencies of Pu corrosion by hydrogen Kinetic data were also measured at temperatures below

in the vulnerability report [1]. Particles with dimensions describing pyrophoric tendencies of compounds and igni-

surement of T and P in each volume. Tests were conducted Other studies suggest that corrosion is promoted by thicknesses of $1-2$ mm and known geometric areas. The

Perplexing observations made during reaction of hydride investigated in experiments with excess metal at conditions with oxygen are inconsistent with pyrophoric tendencies that produce PuH_x. Each metal specimen was exposed to a [15,16]. Reaction initiated immediately after exposure of known amount of H₂ at 4 bar H₂ and a temperature of PuH_x (2.0<x<2.7) to O₂ at 13.3 mbar (10 Torr) pressure -20 to 300°C by expanding a measured quantity -20 to 300°C by expanding a measured quantity of gas and temperatures of $50-360^{\circ}$ C, but ceased abruptly after 2 from the auxiliary volume into the system, isolating the min (20% completion) at 50°C. Oxidation of PuH_x to PuO₂ reactor, and determining by difference the amount de-
x 2008 complete only after 1.5 h at 360°C. A negative livered. Reactions of the oxide-coated specimens we was complete only after 1.5 h at 360°C. A negative livered. Reactions of the oxide-coated specimens were activation energy (-9 kJ mol⁻¹) for the initial reaction sluggish below 150°C and hydriding rates reached maxima implies that oxidation of PuH_y is not autothermic. when metal surfaces were fully covered by PuH_y. In those In this study, we examine the pyrophoric tendencies of cases, reaction was stopped by venting and evacuation 4 bar. $P-T$ data were measured as a function of time, *t*,

and by hydride-catalyzed reaction of metal with air. 150°C using oxide-coated specimens with surfaces that Results and data from literature sources are applied in were chemically altered by heating in vacuum at 150–

formed on the metal during air exposure is reduced to time. cubic $Pu₂O₃$ by Pu [8]:

$$
3PuO2(s) + Pu (s) \rightarrow 4 Pu2O3(s, cubic)
$$
 (1)

P–*T*–*t* data were measured after specimens were exposed $\frac{3.1}{2}$. *The general kinetic relationship* to 4 bar H₂. The Pu₂O₃ layers had maximum thicknesses on the order of 5 μ m as determined by that of the adherent
PuO₂ layer existing on the metal in air at room tempera-
ture [7] and were apparently removed by spallation as
PuH_x formed at the product-metal interface d

A series of isothermal hydriding experiments were also made using large, high-surface-area metal specimens to sensitize the measurements. The test system consisted of a In addition to the proportionality constant (k) , this equation reactor fitted with a thermocouple, a low pressure (0.1–1.3 includes an Arrhenius term defined by the activation mbar) transducer and a H₂-calibrated flow meter. After an energy (E_a) , the gas constant (R^*) , and temperature.
alloy sample had been activated with PuH₁, the tempera- Dependencies of R on concentrations of gaseous r ture and flow rate of H₂ into the system were fixed. The H₂ are shown by the pressure exponents n_1 , n_2 , n_3 , ... pressure increased as gas accumulated in the system and became constant (steady state) when the rates of hydriding and flow of H₂ into the system were equal. Rates of 3.2. *Reaction of plutonium with hydrogen*

reaction was monitored using PVT data to determine the amount of $H₂$ produced by the corrosion reaction:

$$
Pu(s) + H2O(l) \rightarrow PuOH(s) + 1/2H2(g)
$$
 (2)

more oxygen-rich phase by reaction of PuOH and corro- simultaneously vary from 0 to 1.1 depending on consion of metal beyond about 50% were prevented by drying ditions. Equilibrium data for Put_x indicate that the hydride *products* in dynamic vacuum [18]. As in earlier PVT composition at the gas-solid interface may vary experiments with PuH_x and with PuH_x-coated Pu [5], PuH_{2.7} to PuH_{2.3} at one bar H₂ pressure as sample reactivities of PuOH and PuOH-coated metal with air were temperature increases from 100 to 500°C, while the investigated by rapid expansion of dry air from an aux- stoichiometry at the product–metal interface remains near iliary volume into evacuated reactors containing the test $\text{PuH}_{1.95}$ over that range [11]. PuH_x reacts with H₂ at a rate specimens. Initial pressures of the expanded air were 1.01 comparable to that of the $Pu + H_2$ reaction [13] and high-
bar. Pressure and gas-phase temperature near the specimen composition hydride probably forms as particle were measured as a function of time and residual gases cool [14]. Therefore, neither hydride composition nor the were analyzed by mass spectrometry. amount of Pu reacted is precisely defined by PVT data at

200°C for 0.5 h. At those conditions, the PuO₂ layer Pu reacted per unit of true (BET) surface area per unit

3. Results and discussion

$$
R = k \exp(-E_a/R^*T) P1^{n} P2^{n^2} P3^{n^3} \dots \tag{3}
$$

Dependencies of R on concentrations of gaseous reactants

reaction and the corresponding steady-state pressures were
measured at 50°C and successively increasing and decreas-
ing H₂ flow rates.
Samples of PuOH and PuOH-coated metal were pre-
pared by total or partial reaction o

$$
Pu(s) + x/2H_2(g) \rightarrow PuH_r(s)
$$
 (4)

Hydride nonstoichiometry and composition changes induced by hydrogen addition (PuH_{$x+\delta$} formation) or removal (PuH $_{x-\delta}$ formation) are important in determining hy-Occurrence of Eq. (2) was verified by agreement of the
measured reaction rate $(1.9\pm0.1 \text{ mg Pu cm}^{-2} \text{ min}^{-1})$ with
that (2.0 mg Pu cm⁻² min⁻¹) predicted for 0.05 M
changes in composition of the nonstoichiometric hydride extends from about $PuH_{1,9}$ to near PuH₃ and δ may composition at the gas-solid interface may vary from temperature increases from 100 to 500° C, while the composition hydride probably forms as particles spall and Rates of reaction were derived from experimental *P*–*T*– any point in time during the exothermic reaction. Rates for *t* data using incremental changes in temperature-corrected Eq. (4) are calculated assuming that the product is PuH_2 .

reactant pressure during corresponding time periods or Reactions involving changes in hydride com Reactions involving changes in hydride composition are from the rates of gas flow into the reactor. Results for written using $P u H_2$ to designate low-composition hydride metal specimens are reported in units of Pu mass con-
($P u H_{2,s}$) and $P u H_s$ to designate high-compositio $(PuH_{x-\delta})$ and PuH_x to designate high-composition hydride sumed per unit area of geometric surface per unit time. (PuH_{x+ δ}). Use of PuH₂ facilitates the calculation of rate Reaction rates for powders are reported as mass of gas or and the formulation of balanced equations; it does not

measurements, respectively. The second vector of PuH_x. **gen** at rates equal to those of PuH_x.

mean that stoichiometric dihydride exists as a distinct

phase apart from the PuH_x solid solution.

H₂ pressure dropped during PVT experiments, but PH_2

Rate data in Fig. 1 are from representative tests selected

wi

$$
\ln R (R \text{ in g Pu cm}^{-2} \text{min}^{-1} \text{ at } 1.01 \text{ bar H}_2) =
$$

– (2.19±0.11) + (805±39)/T (5)

rate on the concentration of H₂ adsorbed at the gas–solid $n=1/2$ regime for the Pu+H₂ reaction implies that *R* is interface and with a progressively decrease in that con-
determined only by the concentration of diss interface and with a progressively decrease in that con-

Hydriding rates at temperatures in the $250-575$ K range by the general rate equation for the $Pu + H_2$ reaction:

$$
R (g Pu cm-2 min-1) = 0.0567 exp(805/T)(3.75PH2)n
$$

$$
^{(6)}
$$

The reference $H₂$ pressure for this equation is the 0.27 bar transition point. Therefore, rates at pressures below this point are derived using $n=1$ and those at higher PH_2 are calculated using $n=1/2$. *R* at PH_2 values bracketing 0.27 bar give apparent pressure exponents between 0.5 and 1 and are consistent with measured *n* values of 0.6 [20] and 0.7 [21] for H₂ pressures in the transition region. The hydriding rate at 25°C and 1.01 bar H₂ is 1.65 g Pu cm⁻² min⁻¹, a rate corresponding to advancement of the reaction front into the metal at 6 cm h⁻¹. This rates of H_2 , dissociation at the gas–solid interface and of H transport through the PuH_r layer on the metal surface are unusually rapid.

Hydriding kinetics of $Pu₂O₃$ -coated plutonium are indistinguishable from those observed after full activation of the metal by PuH_x . Maximum rates were observed immediately upon exposure of specimens to $H₂$ at temperatures below 150° C. This absence of sluggish behavior is con- $\text{tr } P(\text{P in bar})$ below 150°C. This absence of sluggish behavior is con-
Fig. 1. Dependence of $\ln R$ on $\ln PH_2$ for reaction of Pu with H_2 at selected temperatures in the -20 to 350°C range. Data at H_2 pressures O_2 implies that cubic Pu₂O₃ dissociates and transports hydro-

Flow tests demonstrate that *R* of the Pu+H₂ reaction and PH_2 are coupled. The hydriding rate decreased as the

Insensitivity of the hydriding rate to temperature is sug-
gested by appearance of linear $\ln R - \ln P$ relationships
even though gas phase temperatures increased by more
than 100° during the tests. Respective rates (2.48, 1. self-diffusion in UH₃ imply that R for the U+H₂ reaction is controlled by the combined effects of dissociative The apparent E_a for hydriding is -6.7 kJ mol⁻¹ (-1.7) adsorption and H diffusion through the hydride surface
kcal mol⁻¹), a result consistent with dependence of the higher pressures. A zero or slightly negative E_a centration with increasing temperature at constant *PH*₂. adsorbed hydrogen on the catalytic PuH_x surface at 250–575 K range at 250–575 K range at 250–575 K range at 250–575 K range at 2 *x*¹ *x*² *x*² *x*² *x* and H₂ pressures in the 1 mbar to 4 bar range are defined for Pu coated with PuH_x and with Pu₂O₃ suggests that a by the general rate equation for the Pu+H₂ reaction: similar process occurs on the sesquioxide. Comparison of the hydriding rates with those for powdered metal $[22,23]$ show consistent kinetic behavior and define the relationship between geometric and true surface areas of massive Pu. Gravimetric measurements of the reaction between freshly prepared Pu powder
(0.20±0.05 m² g⁻¹ BET area) and H₂ at -29 to 355°C
show a near-zero (33 J mol⁻¹) E_a . Extent-time data for
30°C and 10.6 mbar H₂ pressure show complete reaction t PuH_{2.63} after 3 min. The *R* (1.7±0.4 mg Pu cm⁻² min⁻¹) derived from the initial mass-*t* slope is 19±5-fold less than the geometric rate (32 mg Pu cm^{-2} min^{-1}) calculated for those conditions using Eq. (6). This result confirms that true surface areas are about 20 times greater than geomet- As noted in Section 3.2, low- and high-composition

exposure of PuOH-coated alloy to excess air at room and N_2 in air and the net reaction consumes 1.86 mol of Pu temperature show that reaction was complete after $5-6$ per mol of air. This factor and the mol of metal show that min. $P-t$ and $T-t$ data for the reaction [17] are in-
the amount of gas consumed during reaction accounts for distinguishable from those obtained following exposure of 99% of the Pu as Pu_2O_3 , PuN, and PuH_x (*x* near 3) and PuH_x-coated metal to air [5] and show that rapid corrosion demonstrates that PuO₂ is not formed. PuH_r-coated metal to air [5] and show that rapid corrosion occurred after a relatively slow initial stage. Mass spec- Dependence of the corrosion rate on air pressure (P_a) is trometric data for residual gases (0.15 bar) show that the defined by the $\ln R - \ln P_a$ results for 0.2–0.7 bar range in both O_2 and N_2 were consumed indiscriminately at the Fig. 2. The idealized slope of the line for $n=2$ is in 3.7:1 ratio of the elements in air. H_2 was not detected as a excellent agreement with the least-squares value of gaseous product, implying that hydrogen was retained as 1.995 ± 0.008 . This result and observation of a second-PuH_x in the solid product. $\qquad \qquad \text{order pressure dependence for hydride-catalyzed reaction}$

the total reaction and is characterized by acceleration of rate is described by this rate relationship over a wide range the reaction over a 0.5-min period. Analysis shows that of air pressure. The previously reported value of $n=3$ for ln *R* increased as a linear function of *t* consistent with pressures less than 3 bar [5] is not observed and apparently formation of hydride via a first-order process [17]. Since resulted from inadequate correction for thermal gradients PuH, does not react readily with N_2 at temperatures below in the PVT system. $250^{\circ}C$ [12], the initial stage is attributed to oxidation of A zero activation energy for the reaction is implied by PuOH and heating of the oxide hydride above its 105°C the precise linearity of data in Fig. 2, even though the decomposition point [9,10]. In the presence of Pu metal, gas-phase temperature varied from 25 to 175 \degree C during the reaction apparently proceeds with formation of $Pu₃O₃$ at measurement. A much larger variation in specimen temthe gas–solid interface and PuH, at the product–metal perature undoubtedly occurred and may have approached interface: several hundred degrees [5]. In the absence of a tempera-

$$
3xPuOH(s) + (3 - x) Pu (s) \rightarrow xPu_2O_3 (s) + 3PuH_x (s)
$$
 (7)

reactive specimens obtained by reacting oxide-coated equation for hydride-catalyzed corrosion of Pu in air: metal with small amounts of H_2 at 400°C [5].
The second stage is a catalyzed-corrosion reaction

identical to the rapid second stage of reaction following air Fortuitously, the rate of corrosion in 1.01 bar air coincides exposure of metal coated with PuH_x or with a Pu₂O₃- with that (1.65 g Pu cm⁻² min⁻¹) fo PuH_x double layer [5]. Hydrogen produced by rapid at 1.01 bar H₂ and also advances into the metal at a rate of reaction of O₂ and N₂ with PuH₂ is retained by formation 6 cm h⁻¹. of PuH, and subsequent reaction with metal to reform Results of this study and the extremely rapid reaction

$$
xPuH_2 (s) + 3(x - 2)/4O_2 (g) \rightarrow (x - 2)/2Pu_2O_3 +
$$

2PuH_x (s) (8)

$$
xPuH_2 (s) + (x - 2)/2N_2 (g) \rightarrow (x - 2)PuN + 2PuH_x (s)
$$
\n(9)

$$
4PuHx(s) + 2(x - 2)Pu(s) \to 2xPuH2(s)
$$
\n(10)

$$
2Pu(s) + 3/4O_2(g) + 1/2N_2(g) \rightarrow 1/2Pu_2O_3(s) + PuN
$$
\n(11)

ric values [24]. hydrides are indicated by PuH_2 and PuH_x , respectively. Eq. (11) results from a catalytic cycle in which hydride reacts with O_2 to form the Pu₂O₃ catalyst that dissociative-3.3. *Reaction of PuOH-coated plutonium with air* ly adsorbs both O₂ and N₂. PuH_x is also a catalytic intermediate for forming PuN from metal [25]. Product Measurements of pressure and temperature after rapid stoichiometry is determined by the concentrations of $O₂$

The initial stage of reaction accounts for less than 5% of at 2–3 bar air pressure [5] imply that the same corrosion

ture dependence, *R* depends only on air pressure and permits evaluation of the isobaric rate constant for each point in Fig. 2. Calculation of the average k for all data points assuming $E_a = 0$ and $P_a = 1$ bar gives 1.72 \pm 0.07 g
The product configuration corresponds to that of the highly Pu cm⁻² min⁻¹ bar⁻² and leads to the general rate

$$
R (g Pu cm-2 min-1) = 1.72Pa2
$$
 (12)

PuH₂: between O₂ and metal coated with a Pu₂O₃-PuH_x double

at the sesquioxide surface and transported to the oxide– auxiliary volume had been able to enter the reactor. hydride interface. During catalyzed reaction of air, a Incomplete reaction of hydride was also observed during product layer of Pu₂O₃ and PuN or an oxide nitride solid microbalance studies in which PuH_x was exposed to excess solution is apparently responsible for dissociative adsorp-
O₂ at 13.3 mbar and temperatures of 50– tion and transport of both oxygen and nitrogen. Although High-surface-area $(0.20 \pm 0.05 \text{ m}^2 \text{ g}^{-1})$ PuH_x $(2.0 \le x \le$ cracks and fissures in the product layer may provide direct 2.7) specimens were prepared by repeated hydriding– access of O_2 and N_2 to the hydride layer, that possibility dehydriding cycles and thermal treatment to adjust the final seems unlikely because exposure of PuH_r-coated Pu to air stoichiometry. Mass-time data (Fig. seems unlikely because exposure of PuH_x-coated Pu to air is followed by a relatively sluggish step like that observed ing exposure of freshly prepared PuH₂₇ to H₂ at 50°C. for PuOH-coated metal [5]. Rapid initial reaction with air show that reaction initiated immediately, advanced at a

sion is derived from known chemistry of participating transformation to $PuO₂$). Similar data for reaction of materials. Whereas reaction of Pu metal with H₂ is rapid PuH_{2.0} at 360°C [15] show an initial linear gain of 30 mg
even at room temperature and reaction of Pu with O₂ O g⁻¹ PuH_x over an 8-min period and a progre proceeds at a slow rate at 25° C, direct reaction of Pu with

 $N₂$ is not observed at low temperatures and is less than 80% complete after 17 h at 1000°C [25]. However, O_2 readily reacts with PuH_x at room temperature and PuN is obtained by reacting N_2 with PuH_x at 300–400°C. During catalyzed reaction of air, oxygen and nitrogen are dissociatively adsorbed and transported to the product–hydride interface where they readily react with $PuH₂$ according to Eqs. (8) and (9). Nitriding is driven by the heat of oxidation. Product hydrogen is accommodated in the hydride lattice as higher-stoichiometry PuH_r and rapidly transported to the hydride–metal interface where $P uH₂$ is reformed at a rate comparable to that for hydriding at 1 bar H_2 .

3.4. *Reaction of PuOH with air*

Results suggest that dry monoxide monohydride is not pyrophoric upon rapid exposure to air at 1.01 bar and 25°C. PVT measurements are inconclusive because reaction with O_2 to form Pu_2O_3 and H_2 is accompanied by a pressure increase and formation of $PuO₂$ and $H₂$ occurs without pressure change. Negligible reaction is indicated by failure to detect either a thermal excursion during the test or H_2 in the reactor atmosphere after its completion.

3.5. Reaction of PuH_x with air and oxygen

Earlier PVT studies [5] show that rapid exposure of PuH_r to air at 1.01 bar 25° C is accompanied by a pressure increase and a substantial thermal excursion during a Fig. 2. Dependence of ln *R* on ln P_a after exposure of PuOH-coated delta 0.5-min period after addition of the gas. Analysis of phase alloy to air at 25° C and 1.01 bar. exposure of PuOH-coated delta residual gas in residual gas in the reactor shows that O_2 was depleted and that H_2 was the major gaseous species. The primary reactant was N_2 , a species that on average was consumed layer [5] suggest that plutonium sesquioxide plays an in a 1.6:1 molar ratio relative to O_2 . Mass–balance important role in promoting corrosion. Products obtained calculations show that $5-20\%$ of the PuH_x reacted with in the earlier work had a PuH, core encased in a thick shell formation of $3-15%$ PuN and $2-5%$ Pu₂O₃. Reaction of Pu₂O₃, implying that oxygen is dissociatively adsorbed would probably have continued if additional oxygen in the

occurs only if a Pu_2O_3 layer preexists on the hydride
surface.
A qualitative understanding of hydride-catalyzed corro-
a mg O g⁻¹ PuH_x, and continued at a gradually decreasing
at qualitative understanding of hydrid

Fig. 4. Composite mass-time data for reaction of PuH_x with O_2 at 13.3
mbar and progressively increasing constant temperatures. Reaction rates and a Data are derived from mass-time curves presented in Refs. [15,16]. are defined by dashed lines indicating initial slopes. Data are from Ref. Rates are calculated from the initial slope of the mass–time curve and [16]. a surface area of 0.2 m² g⁻¹.

higher temperatures after an initial exposure of $\text{PuH}_{2.7}$ to $O₂$ at 50°C. During graphically omitted time intervals between tests, the microbalance system was evacuated and the sample temperature was increased before O_2 was reintroduced. Behavior at each temperature is similar to that for exposure of PuH_x to O_2 with a relatively rapid linear initial reaction and a slow linear terminal reaction.

Prior analysis of the kinetic results concluded that oxidation of PuH_x is a two-stage process in which the mass–time isotherms follow first-order kinetics during an initial reaction and linear (constant rate) kinetics during a secondary (terminal) reaction [15,16]. First-order rate constants for initial oxidation give $E_a = -9$ kJ mol⁻¹, suggesting that the reaction has zero activation energy. The secondary reaction has an activation energy of 42 kJ mol^{-1} and was identified as slow oxidation of hydride by diffusion of oxygen through a protective PuO_2 film on the hydride surface. Although the surface oxide was not identified by XRD, mass data in Fig. 4 show extent of reaction in excess of that for Pu₂O₃ (88 mg O g⁻¹ of PuH_r). Conformity of secondary rates to a single Arrhenius relationship implies that dioxide was present during the terminal period of all tests. Since the hydride was coated by oxide during both the rapid initial and slow Fig. 3. Mass-time data for reaction of PuH_{2.7} with O_2 at 50°C and 13.3
mbar. Data are from Refs. [15,16].
mbar. Data are from Refs. [15,16].
Reassessment of data for the PuH₂ + O₂ reaction [15,16]

focuses on initial oxidation and the apparent existence of time regime was entered after 70 min. Formation of $PuO₂$ two distinct steps instead of a single first-order process was about 95% complete after 90 min. Results in Fig. 4 prior to secondary reaction. As seen in Figs prior to secondary reaction. As seen in Figs. 3 and 4, the show that stepwise mass gains occurred at successively linear mass–time step is followed by a non-linear step in which the rate decreases gradually. Oxidation rates defined by the initial linear segments at several temperatures (Table 1) give an E_a of -7.8 kJ mol⁻¹. Data for PuH_x coated with oxide prior to testing give an E_a of -2.3 kJ mol⁻¹. These results confirm that the initial step has zero activation energy, and that unlike the protective $PuO₂$ layer present during secondary reaction, the oxide present during initial reaction has little effect on the oxidation rate of PuH_x. Behavior is similar to Pu₂O₃-catalyzed corrosion of Pu by H_2 , O_2 , and air and suggests that sesquioxide is present during the initial reaction.

Table 1

Initial rates for oxidation of PuH_x by O₂ at 13.3 mbar pressure and $50-360^{\circ}\text{C}^{a}$

Solid reactant	Temperature $(^{\circ}C)$	$R^{\rm b}$ $(\mu g \text{Pu cm}^{-2} \text{min}^{-1})$	
PuH, τ	50	88	
Oxide-coated PuH.	160 ± 1	36	
Oxide-coated PuH	215 ± 2	34	
Oxide-coated PuH.	253 ± 10	32	
Oxide-coated PuH.	315 ± 2	31	
PuH _{2,0}	360	21	

beginning of each test was not identified, free energy data corrosion of massive Pu in air: [26] show that reduction of PuO_2 by PuH_x is favorable. Pu_2O_3 undoubtedly formed as the sample was heated in

$$
3PuO2 (s) + (1 + 2y)PuH2 (s) \rightarrow 2Pu2O3 (s) + 2yPuHx (s)
$$
\n(13)

The *y* coefficient accounts for the molar ratio of hydride to PuH_x with air and PuH_x-catalyzed corrosion of Pu by air dioxide in the reacting mixture and determines the stoi-
and that their rates are determined solel chiometry of the hydride product: $x = (2y + 1)/y$. The pressure. value of *x* remains near 2 if *y* is large, but increases The second step of the initial PuH 1O reaction is *^x* ² expected because oxygen is readily transported by the Pu_2O_3 layer on the hydride to protective PuO₂. The rate of Pu_2O_3 product separating the reactants. Formation of PuH_x this process is determined by the competing rates of PuO₂ shows that hydride behaves like Pu in accommodating reduction by PuH₂ (Eq. (13)) and Pu₂O₃ oxidation by O₂: product hydrogen, but the capacity is significantly lower.

Correspondence of the initial $PuH_x + O₂$ reaction and the PuH_x-catalyzed Pu+O₂ reaction is suggested by compari-
ing results in Table 1 with the geometric rate of metal
corrosion (78 g Pu cm⁻² min⁻¹) measured at a median O₂ dependent of temperature, but as discussed be pressure of 3.2 bar and temperatures in excess of 1000°C to PuO₂ to Pu₂O₃ is increasingly favored at the high 2 23 8C is adjusted to the BET equivalent value (3.9) temperatures generated by rapid reaction at [5]. This rate is adjusted to the BET-equivalent value (3.9) g Pu cm⁻² min⁻¹) using the factor of 20 relating geomet-
ric and true areas. Comparison with the median initial rate temperature and low O₂ pressure. The median initial rate and low O_2 pressure.

2. The pressure are $(55 \mu g$ Pu cm⁻² min⁻¹) at 13.3 mbar O₂ is possible 21 Entry into the slow secondary stage of oxidation and 2. Entry into the slow secondary stage because both processes are temperature independent. The ultimate formation of a protective PuO₂ layer is apparently processes are temperature independent. The initiated by production of H_2 . Hydrogen formed during pressure coefficient defined by $\Delta \ln R/\Delta \ln P$ ratio is 2.04,
a value close to that observed for PuH_x-catalyzed corrosion
of Pu by air. This result defines the general rate relation-
of the PuH_x cores inside reacting hy small amount was present as H_2 at the equilibrium 2 ship for temperature-independent initial oxidation of PuH_x small amount was present as H_2 at the equilibrium

$$
R \text{ (g PuH}_x \text{ cm}^{-2} \text{ min}^{-1}) = 0.37 (PO_2)^2 \text{ (BET area)}
$$
 (14)

$$
R
$$
 (g Pu cm⁻² min⁻¹) = 7.4(PO_2)² (geometric area) (15)

with air is gained by use of Eq. (15) in deriving the reaction during the linear step were small and temperatures Pu in air. The squared dependence of *R* on air pressure Equilibrium data for PuH_x show that the *x* values at *(Eq. (12))* is assumed to arise from the partial pressure of $P_eH_2 = 13$ mbar H₂ are 2.24 and 2.78 for 36 O_2 . The pressure exponent for N_2 is assumed to be zero. If respectively [27]. reaction of nitrogen is driven by the thermal effect of O_2 Formation of PuO₂ on the PuH_x surface at low O₂ reaction, the molar ratio of Pu consumed by N₂ to that pressure is counterintuitive, but consistent wit consumed by O_2 during indiscriminate corrosion of metal oxide on Pu metal. Since Pu_2O_3 coexists in equilibrium by air (5.57:1) is determined by the mole percentages of with Pu at all temperatures [28], appearance of the elements in air and the stoichiometry of Eq. (11). only detectable oxide on the metal in air at 25° C is also Inclusion of this factor and substitution of $PO_2 = 0.21P_a$ in counterintuitive and shows that formation of surface oxide

Although the oxide present on the hydride at the Eq. (15) leads to a predicted general rate equation for

$$
R (g Pu cm-2 min-1) = 1.8Pa2
$$
 (16)

vacuum prior to each test: Δ 21 The predicted rate at 1 bar air (1.8 g Pu cm⁻² min⁻¹) is in excellent agreement with the experimental value of 1.72 ± 0.07 g Pu cm⁻² min⁻¹. These results imply that the same kinetic processes occur during initial reaction of and that their rates are determined solely by the O_2 partial

attributed to progressive transformation of the catalytic

$$
Pu_2O_3(s) + 1/2O_2(g) \to 2PuO_2(s)
$$
 (17)

pressure $(P_e H_2)$ defined by *T* and *x* of the PuH_x solid solution [11,27]. During isothermal oxidation measurements [15,16], the oxidation rate was not detectable altered as long as P_e H₂, was much less than the 13.3 mbar pressure The corresponding general equation for PuH_x-catalyzed of O₂. However, the bed of reacting hydride powder
oxidation of massive Pu by O₂ is derived by inclusion of became filled with H₂ as x increased and P_e H₂ a bed slowed the rate of heat generation and resulted in progressive transformation of the Pu_2O_3 layer to PuO_2 .

progressive transformation of the Pu₂O₃ layer to PuO₂.
Involvement of H₂ in terminating rapid initial reaction is Correspondence of rates for unalloyed and alloyed metal supported by extent-of-reaction data for PuH_{2.0} at 360°C during hydriding and PuH_x-catalyzed corrosion [5] implies [15] and for PuH_{2.7} at 50°C (Fig. 3) [16]. D [15] and for PuH_{2.7} at 50 °C (Fig. 3) [16]. Deviation from that Eq. (15) is independent of alloying. linear behavior occurred when the respective *x* values of Insight into the reactions of PuH_x and PuH_x-coated Pu the PuH_x product reached 2.25 and 2.77. Extents of general rate relationship for PuH_x-catalyzed corrosion of remained essentially constant during initial reaction. $P_eH_2 = 13$ mbar H₂ are 2.24 and 2.78 for 360 and 50°C,

> pressure is counterintuitive, but consistent with behavior of with Pu at all temperatures [28], appearance of $PuO₂$ as the

is controlled by kinetics, not thermodynamics [9]. Exten- have metal ions in fcc lattices. In the CaF₂-type structures μ m and more than 90% transformation of the 10–15- μ m sites, and one conduction electron per formula unit [11,19].

reaction of PuH_y with air and hydride-catalyzed corrosion gases at room temperature depends on transport and of metal [5], PuH reacts rapidly with air only if sesquiox- accommodation of reactant anions within a stationary fcc *^x* ide is present at the gas–solid interface. The Pu_2O_3 surface metal lattice.
participates with the underlying PuH, in catalyzing corro-
Plutonium hydride is classified as pyrophoric because participates with the underlying PuH_x in catalyzing corrosion. Whereas PuH_x promotes PuN formation and trans-
ports hydrogen at a surprisingly rapid rate, Pu_2O_3 disso-
by experimental data, reaction of PuH_x with air initiates at ciates and transports oxygen and nitrogen with equal room temperature and occurs with near-zero activation facility. In contrast, oxidation of PuH_x is slowed by energy, an indication that Pu₂O₃ (or oxide nitride) on the formation of PuO₂ [16]. hydride surface catalyzes dissociation of O_2 and N₂.

on favorable thermodynamics, but is controlled by kinetics. hydrogen correlation time at room temperature [30]. The Free energies for reactions of PuH₂, Pu₂O₃, and PuOH result for PuH_x is supported by proton NMR data indicatwith constituents of air are highly negative. Products and ing that diffusion is too fast for measurements at room corresponding enthalpies of reaction are given in Table 2 temperature and that a rigid hydride lattice exists only at with qualitative assessments of reactivity suggested by temperatures below $-80^{\circ}C$ [31]. Behavior is consistent experimental observation. In addition to the effects of with superionic conduction in PuH, above this temperature specific surface area, heat transfer, and oxygen concen- [32]. Facile migration and accommodation of product tration [4], important factors contributing to pyrophoric hydrogen in the hydride promotes rapid initial reaction by behavior include the ability the reacting solid to dissocia-
tively adsorb and transport reactant and to accommodate gas-solid interface. tively adsorb and transport reactant and to accommodate additional anions in the existing structure. Accumulation of an oxygen-depleted nitrogen layer at

sive transformation of the dioxide layer to Pu₂O₃ during of PuH₂ and PuO₂, tetrahedral sites in the cation lattice are oxidation at 300°C [29] suggests that the Pu+PuO₂ fully occupied. The Mn₂O₃-type structu fully occupied. The Mn_2O_3 -type structure of Pu₂O₃ is reaction has a high E_a and increasingly competes with Eq. derived from PuO₂ by removing 25% of the anions and (17) at elevated temperatures. Penetration of the outer reducing cations to Pu(III). Superstoichiometric PuH_x (2 \lt PuO₂ layer by 35 keV radiation during diffraction analysis $x < 3$) is derived by filling octahedral sites in PuH₂, a of the product implies a maximum dioxide thickness of 0.1 metallic phase with Pu(III) on cation site thick oxide layer to Pu₂O₃. The rate of PuH_x oxidation is Electrical conductivity decreases with increasing *x* as driven by high O₂ pressure and the accompanying heat conduction electrons are bound as hydride ion driven by high O_2 pressure and the accompanying heat conduction electrons are bound as hydride ions. The PuOH generation promotes Pu_2O_3 formation. At low O_2 structure is derived by equal filling of tetrahedral si pressures, PuO₂ formation is favored because the rate of Pu(III) lattice with O^{2-} and H⁻ in a 1:1 ratio. In the heat generation is slow and the rate of Eq. (17) exceeds NaCl-type structure of PuN, tetrahedral site NaCl-type structure of PuN, tetrahedral sites of the fcc that of Eq. (13). Pu(III) lattice are vacant and octahedral sites are occupied
As implied by the presence of Pu₂O₃ during rapid by N³⁻. Rapid and continuing reaction of these solids with

by experimental data, reaction of PuH_x with air initiates at Hydrogen formed by reactions of O_2 and N_2 is rapidly transported from the product–hydride interface into the 2. **4. Pyrophoricity and ignition of plutonium metal and** bulk hydride and is accommodated as H⁻ in the hydride **compounds** structure. Based on an average hydride thickness of 5 μ m and the hydriding rate measured at 25° C and 1 bar H₂, the apparent coefficient for diffusion of hydrogen in PuH_x 4.1. *Pyrophoricity of plutonium compounds* apparent coefficient for diffusion of hydrogen in PuH_x $(10^{-3} \text{ cm}^2 \text{ s}^{-1})$ far exceeds the value $(10^{-11} \text{ cm}^2 \text{ s}^{-1})$ Pyrophoric behavior of reactive materials is predicated derived for UH_3 from the lattice parameter and the

The structures of all reactants and products in Table 2 the air–solid interface is precluded by reaction of N_2 .

^a Thermodynamic data are from Refs. [18,26].

^b H₂ is produced as temperature and x of the PuH_x product increase.

^c The enthalpy describes indiscriminate reaction of O₂ and N₂ with PuH₂ and reaches a minimum value of -234 kJ mol⁻¹ Pu as x of the Pu increases.

rapid dissociation and transport of nitrogen. A sufficiently temperature required for forming $Pu₂O₃$ and driving the exposure to air and reaction is not slowed by accumulation temperature-independent rate until the hydride composition

because the extent of the Pu₂O₃ + O₂ reaction is limited. surface.
Dissociative adsorption of O₂ by Pu₂O₃, rapid transport of Temperature-independent rates indicated by curves 10– Dissociative adsorption of O_2 by Pu_2O_3 , rapid transport of oxygen in the sesquioxide, and facile accommodation of 12 in Fig. 5 describe catalyzed corrosion reactions of reactant in vacant lattice sites are features that closely plutonium. The PuH_x- or Pu₂O₃-catalyzed Pu+H₂ re-
parallel those of PuH_x</sub>. Although the heat spike produced action initiates at 25°C. As shown by curve parallel those of PuH_x. Although the heat spike produced action initiates at 25° C. As shown by curve 11 for 1.0 bar *x*¹ upon exposure to air is sufficient to ignite small metal H_2 , hydriding of alloyed and un upon exposure to air is sufficient to ignite small metal H_2 , hydriding of alloyed and unalloyed plutonium particles [7], thermal effects are limited by the capacity of proceeds at an essentially constant rate until equ the Pu₂O₃ lattice for additional oxygen. Rapid oxidation is the metal–hydride system is reached near 885^oC [34]. further throttled by accumulation of an oxygen-depleted N_2 layer at the gas–solid interface and by inherent formation of protective $PuO₂$.

Although plutonium monoxide monohydride is a hydridic compound with potential for pyrophoric behavior, experimental results indicate that PuOH is rather unreactive. Oxygen most likely interacts with PuOH at room temperature via a metathetic redox reaction in which O_2 and $2H^-$ are replaced by O^{2-} and H_2 . Oxidation is hindered because movement of product hydrogen out of the solid and release of $H₂$ blocks transport pathways for $O₂$. Although vacant interstitial sites are present in the lattice, additional anions cannot be accommodated unless Pu(III) is oxidized to Pu(IV) as in the Pu₂O₃ + O₂ reaction. The initial reaction apparently generates insufficient heat for decomposition of oxide hydride into a more reactive chemical state [9,10] and spontaneous reaction is not observed at 25°C.

4.2. *Ignition of plutonium metal*

As noted in the introduction, controlled experiments show that plutonium particles with dimensions less than 0.1 mm ignite in air when heated to $150-200^{\circ}\text{C}$ in air [7]. Fig. 5. Arrhenius results for corrosion of alloyed Pu and delta-phase alloy Specimens of Pu fines $(50-100 \mu m)$ size) prepared by filing in different gaseous atmospheres. Curves 1–9 for oxidation in dry or massive metal and sieving the product in dried $(200-700)$ moist air at 1.01 bar are from R massive metal and sieving the product in dried $(200-700)$ moist air at 1.01 bar are from Ref. [5]. Curves 1-4 are for unalloyed
ppm H₂O) air ignited upon heating to 175–200°C in
flowing air [33]. Preparation of specime cedure is possible only if oxide-free Pu particles do not 200° C. (4) Oxidation in dry (<0.5 ppm H₂O) air below 200°C and dry or
spontaneously ignite in air at 25°C. Therefore, reports of moist air above 200°C. (5) spontaneously ignite in air at 25°C . Therefore, reports of moist air above 200°C . (5) Oxidation in moist air. (6) Oxidation in dry contangous ignited Pu in static above 200°C . (5) Oxidation in dry spontaneous ignition involving both finely divided [4] and
massive [2,5] metal at room temperature suggest that
self-sustained reaction is initiated by reactive materials
of the than Pu.
of the than Pu.
1.01 bar.
1.01 bar other than Pu.

Nitriding is promoted by the heat of oxidation and Arrhenius results in Fig. 5 indicate that plutonium apparently depends on the presence of catalytic Pu_2O_3 for ignition is driven by both thermal and catalytic processes. rapid dissociation and transport of nitrogen. A sufficiently As detailed in the caption, curves $1-9$ high O_2 pressure is needed to attain and maintain the dependent corrosion rates for unalloyed and alloyed temperature required for forming Pu_2O_3 and driving the plutonium in humid and dry air at 25–3500°C [5]. Effec $PuH_x + N_2$ reaction. Adequate heat is produced upon rapid of alloying and moisture are absent above 400°C and exposure to air and reaction is not slowed by accumulation thermally initiated oxidation is self-sustaining bey of residual N₂ at the surface. N₂ and O₂ react at the 500°C, a temperature consistent with the ignition-point temperature-independent rate until the hydride composition range of 500±25°C [7]. Rates of self-sustained approaches PuH₃ and the equilibrium H₂ pressure becomes in static air and in dynamic air during free fall of ignited sufficiently high to throttle reaction. In some cases, Pu droplets are shown by curves 8 and 9, respectively. pyrophoric reaction apparently continues as product hydro- Oxidation in static air is temperature-independent because gen burns at the solid surface. a nitrogen-rich boundary layer formed by depletion of Plutonium sesquioxide is classified as highly reactive oxygen at the gas–solid interface limits access of O_2 to the

proceeds at an essentially constant rate until equilibrium in

air with PH_2O at 0.21 bar. (3) Thermally-induced decrease at 110–200^oC. (4) Oxidation in dry $(< 0.5$ ppm H₂O) air below 200^oC and dry or

Hydride-catalyzed corrosion of Pu initiates spontaneously that hydride formed by reaction of water participates in O_2 also initiates spontaneously upon rapidly exposure to 1.0 bar O_2 .

Sufficient heat for ignition may be generated by oxidation reacts with chemisorbed $H₂O$ to form a high-composition of reactive compounds coexisting with the metal [3]. The oxide (PuO_{2+r}) and hydrogen [24,39,40]. The H atoms thermal contribution of chemical reactions in promoting produced at the gas–oxide interface combine with disignition is demonstrated by the behavior of chips and fines. sociatively adsorbed oxygen to reform the water catalyst. Thermal modeling shows that rapid reoxidation of the Enhanced oxidation is caused by the increase in oxygen Pu₂O₃-rich layer formed on the metal surface by au- concentration associated with PuO_{2+x} formation at the toreduction of adherent PuO₂ at $150-200^{\circ}$ C provides gas–solid interface, not by formation of catalytic hydride sufficient heat to raise the adiabatic temperature to the at the oxide–metal interface. Corrosion rates in moist and 500 \degree C ignition point of Pu if the minimum thickness of the dry air are equal above 200 \degree C where chemisorbed water is metal is less than 0.1 mm [7]. Measurements at constant unstable. ambient temperatures [35] and calculation of the tempera- A more comprehensive view of hydride formation ture (300°C) at which the rate of heat loss from a Pu during Pu corrosion in moist air is gained by considering surface equals the rate of heat generation by air oxidation the Pu $+H₂O$ reaction and the effects of temperature on the [36] show that accumulation of heat from autothermic surface oxide. The protective PuO_2 layer formed by oxidation of the metal offers a slower alternative ignition reaction of H₂O vapor at low temperatures prevents path that initiates at ambient temperatures as low as 375°C product hydrogen from reaching the oxide–metal interface [35]. Heat apparently accumulates at temperatures in the and forming hydride $[16,40]$. In the absence of O_2 , $300-375$ °C range, but metal with minimum dimensions of hydrogen appears as H₂ instead of thermodynamically several millimeters oxidizes fully before the 500°C ignition favored PuH_x. The shift in kinetics of the competing redox *point* is reached.

ly ignites upon exposure to air at temperatures as low as interface and the likelihood of exposing that layer during 258C. Self-sustained reaction occurs if the heat generated oxide spallation. An increase in the probability of transby initial reaction of O_2 is sufficient to form a catalytic porting hydrogen to the oxide–metal interface at elevated Pu₂O₃ layer at the gas–solid interface. Catalyzed reaction temperatures is suggested by the presence of about 15% continues until all metal is consumed. PuOH reactivity is PuH_r in the Pu+H₂O product at 250°C [29]. markedly altered by the presence of Pu because product of an accelerating third stage during reaction of Pu with hydrogen is accommodated by the metal and does not H_2O vapor at 20 mbar and 305°C [41] suggests that formation of Pu_2O_3 is progressively driven by an auto-

tures, as well as catalytic and transport properties of reaction is prevented by absence of PuH_x catalyst. Burning metal glows like charcoal because the N₂ diffusion barrier. at the gas–solid interface maintains a constant oxidation rate. Kinetic control of plutonium corrosion in air at normal

studies of moisture-enhanced plutonium corrosion in air is metal interface beneath a protective PuO₂ layer [29]. In a

if metal coated with PuH_x, PuOH, or a Pu₂O₃-PuH_x acceleration of the rate [37]. Production of PuH_x by the *double layer* is rapidly exposed to air at room temperature. reaction of H₂O at elevated temperatures reaction of H_2O at elevated temperatures is documented [29,38], but its formation in moist air below 200 $^{\circ}$ C is only Curve 10 defines the rate in air at 0.6 bar because data for [29,38], but its formation in moist air below 200°C is only 1.0 bar coincides with curve 11 for hydriding. As de-
implied by a 10^2-10^4 fold enhancement of t scribed by curve 12, hydride-catalyzed oxidation of Pu by rate and the absence of H_2 as a detectable reaction product.
O, also initiates spontaneously upon rapidly exposure to O_2 is consumed at the rapid rate of the 1.0 bar O_2 .
Thermal ignition of Pu results if metal is heated to indicate that reaction of Pu with O_2 , in moist air below Thermal ignition of Pu results if metal is heated to indicate that reaction of Pu with O_2 in moist air below 500°C by an external heat source or a chemical reaction. 200°C is catalyzed via a cycle in which surface PuO, 200° C is catalyzed via a cycle in which surface PuO₂

reaction of $H₂O$ vapor at low temperatures prevents reactions toward $Pu₂O₃$ at high temperatures increases the Massive metal coated with PuH, or PuOH spontaneous-
thickness of the sesquioxide layer at the oxide–metal PuH_x in the Pu+H₂O product at 250°C [29]. Appearance formation of Pu_2O_3 is progressively driven by an auto-
thermic process. 'Slate-like' mixtures of oxide and hydride Enhanced autoreduction of $PuO₂$ at elevated tempera-
res, as well as catalytic and transport properties of are obtained by reacting massive Pu with mixtures of 25% Pu₂O₃, suggests that thermal ignition in air is triggered by steam and 75% argon at temperatures above 400°C [38]. formation of a sesquioxide layer on the metal near 500° C. Although reaction is initiated by external heating, self-Self-sustained thermal oxidation (curve 8) is slower than sustained reaction and temperatures in the $400-800^{\circ}$ C hydride-catalyzed corrosion (curve 10) because the Pu+N₂ range are maintained by adjusting the H₂O partial pressure reaction is prevented by absence of PuH, catalyst. Burning in the Ar carrier. PuH, formation via the reaction is apparently promoted by progressive formation of catalytic $Pu₂O₃$ at elevated temperatures.

storage temperatures $(<100^{\circ}C$) inherently results in formation of products containing no detectable hydride, but **5. Applications** behavior differs in open and closed chemical systems. In an open system, the O_2 source is unlimited, the water-5.1. *Chemistry of stored plutonium* catalyzed $Pu + O_2$ reaction continues as long as O_2 is present, and concurrent formation of PuH_r is unlikely. If a A widely accepted conclusion reached during early small amount of hydride forms, it resides at the product– closed system, O_2 is first depleted by water-catalyzed
oxidation of Pu. The Pu+H₂O reaction then proceeds with
formation of additional oxide and H₂. Hydride forms after derived heat product show that the maximum te formation of additional oxide and $H₂$. Hydride forms after the reaction of H₂O is complete and autoreduction trans-
forms the PuO₂ layer onto catalytic Pu₂O₃. The time Maximum temperature changes for $f=0.50$, 0.30, 0.25, required for PuH_x formation depends on temperature, 0.10 and 0.05 are 656, 447, 385, 173, and 90°, respective-
amounts of available O_2 and H₂O, metal area, and ly. These conservative results show that more than 30% thickness of the PuO₂ layer. The final product is the the plutonium must exist as this corrosion product in order Pu₂O₃-PuH_y double layer that catalyzes rapid corrosion of to raise the temperature from 50 to 500°C Pu₂O₃-PuH_x double layer that catalyzes rapid corrosion of to raise the temperature from 50 to 500°C and ignite metal Pu by O₂ and N₂ upon exposure to air and accounts for with a thickness greater than 0.2 mm. Ho Pu by O_2 and N_2 upon exposure to air and accounts for spontaneous ignition of both finely divided and massive 5–6% of the product is necessary to heat chips and fines plutonium $[2,5]$. from 50 to 150°C.

Additional complexity arises if a radiolytic hydrogen Ignition is marked by onset of self-sustained reaction source such as plastic or oil is present. If the system is and is apparently the temperature at which formation of open, H₂ formed by alpha-particle radiolysis of the organic Pu₃O₃ becomes kinetically favored. The ignition point is material escapes without altering behavior. If the system is also defined by the corrosion rate required to maintain that closed, H₂O is formed by combination of H₂ and O₂ on temperature and is bracketed by the maximum oxidation the oxide surface [24,39] and consumed via the Pu+H₂O rate (ln R = -4.6) of curve 4 and self-sustained rat the oxide surface [24,39] and consumed via the Pu+H₂O rate (ln *R*=-4.6) of curve 4 and self-sustained rate reaction [39]. The PuO₂ product is transformed into Pu₂O₃ (ln *R*=-2.0) of curve 8 in Fig. 5. The median reaction [39]. The PuO₂ product is transformed into Pu₂O₃ over time and all hydrogen is ultimately transformed to hydride if sufficient Pu is available. ignition rate. Curve 7 in Fig. 5 shows that the corre-

reaction of coexisting compounds upon exposure to air hydride-catalyzed $Pu + O_2$ reaction (Eq. (15)). Effects of a heats the metal to 500°C. The hypothetical corrosion slightly negative activation energy for the process are product (94.5% PuO_{1.98}, 5% PuH₂, 0.5% Pu grains) ignored. Net heat generation is independent of the PuH_x proposed in an earlier evaluation [3] is suitable for layer at the product–metal interface and the same oxidaproposed in an earlier evaluation [3] is suitable for examining this possibility, even though the likelihood of tion rate is required to form Pu_2O_3 during thermal and forming such hydride-rich mixtures appears remote. Rel-
catalytic ignition. Use of Eq. (15) to calculate evant reactions and data in Table 3 show that thermal corresponding to R of 0.07 g Pu cm⁻² min⁻¹ gives an output is dominated by the presence of hydride and that the ignition pressure of 97 mbar or 9.6% O_2 in air. This value
heat product of the mixture, ΔH° _{mix}, is 296 J g⁻¹ of is in precise agreement with results mixture. that measured the length of time a massive Pu sample

temperature is calculated assuming that the reactions in and exposed to a known O_2-N_2 mixture [33]. Exposure to Table 3 are instantaneously complete and that all heat is atmospheres with 7 and 9% O_2 resulted in termination of retained by the PuO₂ product and coexisting massive Pu. $\frac{1}{2}$ reaction after glow periods of 4 and 6 s, respectively. In The change in temperature (ΔT) is determined by the heat contrast, exposure to mixtures containing 10% or greater product of the reactive mixture, the heat capacities of O_2 concentrations resulted in glow periods of 1–3 min and dioxide (Cp_{PuO_2}) and metal (Cp_{Pu}), and the mass fraction complete oxidation of the metal. These results support our conclusion that high O₂ pressures produce sufficient heat

$$
\Delta T = (f \Delta H^{\circ}_{mix}) / [(fCp_{PuO_2}) + (1 - f)(Cp_{Pu})]
$$
 (18) layers.

Maximum temperature changes for $f=0.50$, 0.30, 0.25, ly. These conservative results show that more than 30% of the plutonium must exist as this corrosion product in order

g Pu cm^{$^{-2}$} min^{$^{-1}$}) is adopted as the best indicator of sponding temperature is 490° C. In a similar way, rate equations derived in this study define the $O₂$ pressures 5.3. *Control of ignition* required for formation of Pu₂O₃.

Estimation of the ignition pressure for thermal oxidation Ignition of plutonium via the thermal route is possible if of Pu in air is based on the general rate equation for the The maximum effect of the reactive mixture on metal glowed (reacted rapidly) after it was preheated to 500° C conclusion that high O₂ pressures produce sufficient heat to form Pu_2O_3 and low O_2 pressures yield protective PuO_2

Table 3

Reactions and thermodynamic data for oxidizing a mixture of reactive plutonium compounds

Reaction	ΔH° of reaction per ^a unit of solid reactant		Percentage in mixture	Heat product $(J g^{-1} mix)$
	$(kJ \text{ mol}^{-1})$	$(kJ g^{-1})$		
$Pu + O_2 \rightarrow PuO_2$	1056	4.42	0.5	22.1
$PuH2+3/2O2 \rightarrow PuO2+H2O$	891	4.74	5.0	237.0
$PuO1.98 + 0.01O2 \rightarrow PuO2$	10.5	0.039	94.5	36.8

^a Enthalpy of formation data used for calculating ΔH° are from Ref. [26].

sustained corrosion of Pu by the hydride-catalyzed reaction significant difference is the greater capacity for accom-Ignition tests show that reactions of Pu filings in nitrogen-

rich atmospheres containing 3–5% O₂ initiated near

170°C, but were incomplete [33]. Experience at Rocky

hydriding at the rate expected for the Pu+H₂ rea 170 $^{\circ}$ C, but were incomplete [33]. Experience at Rocky Flats shows that pyrophoric behavior is sharply reduced or kbar H_2 . These observations imply that, except for the eliminated in reduced-oxygen (3–5%) glovebox atmos- chemical potential driving reaction and failure of Pu to pheres. At the nominal atmospheric pressure of 0.81 bar at readily react with N_2 , chemistry of metal corrosion is the site, 3–5% O_2 corresponds to partial pressures of determined by properties of the product layer o 24–41 mbar. The upper limit of this range agrees with the surface. $O₂$ pressure above which hydride-catalyzed corrosion Results of this study and literature data for corrosion of apparently produces Pu_2O_3 . The lower limit is consistent Pu by H_2O suggest that pyrophoric reaction of corrosion with data showing that exposure of PuH_x to O_2 at 13.3 products and ignition of metal are strongly dependent on *mbar* results in facile formation of PuO₂ and termination storage conditions. Studies show that PuH_x mbar results in facile formation of PuO₂ and termination of rapid oxidation [16]. by the Pu+H₂O or water-catalyzed Pu+O₂ reactions at

hydride is entwined with chemistry of the surface oxide atmospheric corrosion of metal in open oxygen-rich sysformed during reaction. Hydride is reactive and oxidizes tems is unlikely and coverage by a protective $PuO₂$ layer is rapidly upon exposure to oxygen at room temperature. The expected to prevent rapid reaction of PuH, that might be reaction has zero activation energy, and contrary to present at the product–metal interface. Kinetic data sugexpectation, is not autothermic. However, self-sustained gest that complete oxidation of chips and fines is likely pyrophoric reaction with indiscriminate oxidation and during extended exposure to moist conditions with unnitriding occurs if the O_2 pressure is adequate for initial limited oxidant [39]. At 25 \degree C, 0.1-mm thick unalloyed Pu and continuing formation of catalytic Pu₂O₃. If the O₂ is fully oxidized after 6.5 and 2.6 years in 3 and 30% pressure and reaction temperature are too low, rapid relative-humidity air, respectively. However, reaction of reaction terminates as protective $PuO₂$ forms on the water in closed or severely oxygen-starved systems ulti-

Important properties of PuH_x include: a hydrogen transport and containment failure are documented [2,5]. *x* rate characteristic of superionic conduction, a capacity for A fundamental understanding of factors that contr rate characteristic of superionic conduction, a capacity for and nitrogen at rates characteristic of superionic conduction, and a squared dependence of the oxidation rate on oxygen pressure. The pressure exponent is extremely important and apparently results from the interaction of $O₂$ with $Pu₂O₃$, but efforts to identify reasonable mechanistic **Acknowledgements** steps consistent with a squared dependence have been unsuccessful. Experimental work was performed at Los Alamos

is chemically identical to that of pyrophoric PuH_x. Both catalyzed by Pu_2O_3 . Rates also vary with the square of O_2 pany, LLC, Golden, CO.

In a parallel way, the O_2 pressure required for self- pressure and are independent of N_2 pressure. The only with air is derived using Eq. (12). The air pressure modating product hydrogen in metal than in hydride.
corresponding to the corrosion rate of 0.07 g Pu cm⁻² Kinetic results suggest that Pu_2O_3 promotes dissociative
 determined by properties of the product layer on the

temperatures below 200° C [24,39,40]. Small amounts of hydride form in the oxide–metal interface at higher **6. Conclusions** temperatures [29], but stoichiometric production of $Pu₂O₃$ and $PuH₂$ is expected only as temperatures approach or In a synergistic way, pyrophoric reaction of plutonium exceed 500°C. Formation of significant hydride during hydride surface. mately results in formation of the catalytic $Pu_2O_3 - PuH$ In addition to commonly cited properties such as double layer on the metal surface. The likelihood of specific surface area and heat of reaction, pyrophoricity is catalyzed ignition upon exposure to air is high and determined by other fundamental material properties. incidents involving pyrophoric reaction of massive metal

accommodating product hydrogen in the solid, and pyrophoricity of plutonium compounds and ignition of the catalysis of nitride formation. Hydride pyrophoricity also metal is established by this study. The results provide a depends on equally unusual properties of Pu_2O_3 : catalysis technical basis for assessing and managing hazards associof O_2 an N₂ dissociative adsorption, transport of oxygen ated with reactivity and ignition during handling and and nitrogen at rates characteristic of superionic conduc-
storage of plutonium and plutonium-containing

Hydride-catalyzed reaction of Pu with O_2 and N_2 in air National Laboratory under auspices of US Department of chemically identical to that of pyrophoric PuH_r. Both Energy Contract W-7405-ENG-36. Data evaluation an processes have zero activation energy and are apparently report preparation were supported by Kaiser-Hill Com-

-
-
- [1] Photomical Weisley Gund Report on Environmental Sidry and Sidry and Report to Recogn Report On Equation (1) and the Sidry Control of the Sidry Control of the Sidry Control of the Sidry Control of the Sidry Control of
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- **References** [19] J.W. Ward, J.M. Haschke, Comparison of 4f and 5f element hydride properties, in: K.A. Gschneidner Jr., L. Eyring, G.R. Choppin, G.H.
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-